Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(4): 2622-2645, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749938

RESUMO

The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach.


Assuntos
Cinesinas , Tiazóis , Humanos , Linhagem Celular Tumoral , Centrossomo/metabolismo , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Mitose , Fuso Acromático/metabolismo , Tiazóis/química , Tiazóis/farmacologia
2.
Structure ; 24(5): 657-666, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27112599

RESUMO

Rvb1 and Rvb2 are essential AAA+ proteins that interact together during the assembly and activity of diverse macromolecules including chromatin remodelers INO80 and SWR-C, and ribonucleoprotein complexes including telomerase and snoRNPs. ATP hydrolysis by Rvb1/2 is required for function; however, the mechanism that drives substrate remodeling is unknown. Here we determined the architecture of the yeast Rvb1/2 dodecamer using cryoelectron microscopy and identify that the substrate-binding insertion domain undergoes conformational changes in response to nucleotide state. 2D and 3D classification defines the dodecamer flexibility, revealing distinct arrangements and the hexamer-hexamer interaction interface. Reconstructions of the apo, ATP, and ADP states identify that Rvb1/2 undergoes substantial conformational changes that include a twist in the insertion-domain position and a corresponding rotation of the AAA+ ring. These results reveal how the ATP hydrolysis cycle of the AAA+ domains directs insertion-domain movements that could provide mechanical force during remodeling or helicase activities.


Assuntos
Proteínas de Transporte/química , DNA Helicases/química , Simulação de Dinâmica Molecular , ATPases Associadas a Diversas Atividades Celulares , Sítios de Ligação , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , DNA Helicases/metabolismo , Simulação de Acoplamento Molecular , Nucleotídeos/metabolismo , Ligação Proteica
3.
J Biol Chem ; 289(17): 12077-12084, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619421

RESUMO

p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose , Calorimetria , Microscopia Crioeletrônica , Ligação Proteica , Ultracentrifugação , Proteína com Valosina
4.
Open Biol ; 4: 130142, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24598262

RESUMO

The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Degradação Associada com o Retículo Endoplasmático , Humanos , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Simulação de Acoplamento Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
J Biol Chem ; 287(11): 8561-70, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22270372

RESUMO

p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Modelos Moleculares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal , Humanos , Hidrólise , Mutagênese , Mutação de Sentido Incorreto , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteína com Valosina
6.
Biochim Biophys Acta ; 1823(1): 125-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963883

RESUMO

The AAA protein p97 is a central component in the ubiquitin-proteasome system, in which it is thought to act as a molecular chaperone, guiding protein substrates to the 26S proteasome for degradation. This function is dependent on association with cofactors that are specific to the different biological pathways p97 participates in. The UBX-protein family (ubiquitin regulatory X) constitutes the largest known group of p97 cofactors. We propose that the regulation of p97 by UBX-proteins utilizes conserved structural features of this family. Firstly, they act as scaffolding subunits in p97-containing multiprotein complexes, by providing additional interaction motifs. Secondly, they provide regulation of multiprotein complex assembly and we suggest two possible models for p97 substrate recruitment in the UPS pathway. Lastly, they impose constraints on p97 and its interaction with substrates and further cofactors. These features allow the regulation, within the UPS, of the competitive interactions on p97, a regulation that is crucial to allow the diverse functionality of p97.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Ubiquitinas/química , Ubiquitinas/metabolismo , Proteína com Valosina
7.
Biochem Cell Biol ; 88(1): 41-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20130678

RESUMO

p97, also known as VCP (valosin-containing protein), is a hexameric AAA+ ATPase that participates in a variety of cellular processes. It is believed that p97 mediates these processes through the binding of various adaptor proteins. Many factors govern adaptor binding and the regulatory mechanisms are not yet well understood. Sites of phosphorylation and acetylation on p97 have been identified and such post-translational modifications may be involved in regulating p97 function. Phosphorylation and, to a lesser extent, acetylation of p97 have been shown to modify its properties - for example, by modulating adaptor binding and directing subcellular localization. These modifications have been implicated in a number of p97-mediated processes, including misfolded protein degradation, membrane fusion, and transcription factor activation. This review describes the known phosphorylation and acetylation sites on p97 and discusses their possible structural and functional implications.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Acetilação , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica/genética , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...